
 

 

 
Abstract— This COVID-19 pandemic is impacting the world 

in health and economic terms since 2020 with more than 200 
million confirmed infected people and more than 4 million 
deaths across 190 countries. Treatment used against COVID-19 
disease has initially been based on the combination of several 
medicaments, such as hydroxychloroquine/chloroquine, 
azithromycin and kaletra, each of which can individually delay 
the ventricular depolarization and repolarization processes 
through morphological changes in the patient’s 
electrocardiogram. These changes can produce serious 
arrhythmias that lead to the sudden death of the patient.  

This paper presents an interpretable fuzzy rule-based 
system for fatal ventricular arrhythmia risk level estimation due 
to COVID-19 treatment, whose decisions are made on the basis 
of the evolution of electrocardiogram morphology and certain 
patient’s clinical information. For the risk level estimation, the 
proposed fuzzy rule-based system considers three different risk 
levels (High, Moderate and Low) which are indicated by means 
of three different colors (Red, Orange and Green). Decisions 
made by the fuzzy rule-based system present a reliable behavior 
in comparison with cardiologist’s decision. To be precise, the 
obtained accuracy, when comparing both decisions, reaches the 
96.43%, which, joint to the high measured interpretability of the 
decision making system, result in a powerful tool in order to 
avoid death in patients, even in health centers without 
specialized clinical staff, and to reduce the stress in medical 
centers by reducing reaction times in critical patient situations. 

I. INTRODUCTION 
The World Health Organization declared the outbreak of 

COVID-19 a public health international concern in January 
2020, and a pandemic in March 2020. According to data 
obtained from John Hopkins University on 6th August 2021 

at https://coronavirus.jhu.edu/map.html, this pandemic has 
been impacting the world since 2020 with more than 200 
million confirmed infected people and more than 4.2 million 
deaths worldwide. Despite the absence of clinic trails, the 
treatment used against COVID-19 disease has initially been 
based on the combination of several medicaments, such as 
hydroxychloroquine/chloroquine, azithromycin and kaletra. 
All of them can delay the ventricular depolarization and 
repolarization processes, resulting in electrocardiogram 
(ECG) morphological changes in terms of a prolonged QT 
interval, which can produce serious arrhythmias that lead to 
the death of the patient [1, 2]. This circumstance has put the 
focus on these kind of drugs and has conditioned the protocol 
of the clinical staff in COVID-19 patients in such a way that 
the duration of the QT interval of all patients with the 
aforementioned treatment has been being permanently 
analyzed, which implied an additional overload for the 
clinical staff in hospitals.  

In this regard, artificial intelligence (AI) is rapidly 
evolving into applicable solutions for clinical practice in 
different areas of medicine [3], such as atrial fibrillation [4] 
and epilepsy seizures [5], among many other. Indeed, its 
inclusion into the health care systems [6] is not only changing 
dynamics, such as the role of health care providers, but is also 
creating new potential to improve patient safety outcomes [7] 
and the quality of care [8]. In particular, some efforts have 
been made using fuzzy systems to deal with ECG. In this 
sense, neuro-fuzzy and fuzzy systems have been used for 
classifying ECG and diagnosis purposes [9, 10, 11].  

Nevertheless, there are currently limited examples of such 
AI applications being successfully deployed into clinical 
practice [12]. In many cases, despite the impressive practical 
successes achieved by AI. This circumstance can be 
explained in terms of absence of capability to “explain” the 
decision-making in an understandable way [13], even when 
we understand the underlying mathematical principles of 
such models. Therefore, this is potentially problematic for 
medical applications, where there is particular demand for 
approaches that are not only well-performing, but also 
trustworthy, transparent, interpretable and explainable [14]. 
In this sense, explainable artificial intelligence (XAI) is a 
relatively new approach to AI with special emphasis to the 
ability of machines to give sound motivations about their 
decisions and behavior [15]. This relevant feature comes to 
give answer not only to the European General Data Protection 
Regulation (GDPR) that took effect in 2018, which 
emphasizes the “right to explanation” expressed in art. 22, but 
also to one of the challenges that AI must face in order to 
success in clinical applications: Interpretability [12].  
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In this context, one of the most powerful tool of AI in 
terms of interpretability are fuzzy rule-based systems 
(FRBSs), which include human knowledge into its 
knowledge bases in order to make interpretable decisions [16, 
17, 18, 19]. Therefore, FRBS well suited for both questions: 
the accuracy, capability to faithfully represent the real 
system, and the interpretability, capability to express the 
behavior of the real system in an understandable way because 
decisions are made following a human-like reasoning and can 
be understood easily by humans. As a consequence of that, 
the application of FRBS in medicine for different purposes 
can be very beneficial. 

Bearing in mind the above mentioned ideas, this paper 
depicts a FRBS for fatal ventricular arrhythmia risk level 
estimation regarding the QT interval, its evolution from a 
basal ECG, and some relevant clinical information related to 
other risk factors worth considering, which could affect the 
QT interval prolongation. It is important to highlight that the 
proposed FRBS has been designed bearing in mind the 
criteria of specialist (three cardiologists and one 
pulmonologist) from four different Spanish hospitals 
(Hospital Universitario QuironSalud de Madrid, Hospital 
Universitario General de Elda, Hospital San Agustín de 
Linares and Complejo Hospitaliario de Jaén).  

The rest of the paper is organized as follows. Section II 
depicts some important aspects related to ECGs, from which 
the QT interval is going to be obtained, emphasizing the 
relevance of QT interval. Section III depicts the proposed 
fuzzy rule-based system for fatal ventricular arrhythmia risk 
levels estimation. the features of the proposed FRBS in terms 
of interpretability is presented in section V. Section IV 
includes some experimental results in terms of interpretability 
and accuracy. Finally, conclusions and future actions are 
shown in section V. 

II. ELECTROCARDIOGRAM AND QT INTERVAL 
An ECG is a well-used method for examination and 

diagnostics in today’s emergency medical services, which 
ultimately is of benefit to the patient’s life and health. It 
remains one of the most widely used and readily available 
diagnostic tests in modern medicine [20]. In fact, the ECG is 
sometimes the only and most efficient way of detecting life-
threatening conditions, thus allowing a timely delivery of 
emergency care. To be precise, a 12-lead ECG depicts the 
heart electrical activity from several points of view called 
“leads” by means of electrodes located on the skin, which 
detect the different small electrical changes according to 
both, cardiac muscle depolarization and repolarization. 

 The typical heartbeat of an ECG of a normal sinus 
rhythm is shown in Fig. 1. In addition, the different waves 
and the different segments and intervals involved in the 
morphology of a heartbeat are also presented.  The QT 
interval on the surface ECG is given by the measured from the 
beginning of the QRS complex to the end of the T-wave, 
which represents the electrocardiographic manifestation of 
ventricular depolarization and repolarization. Nevertheless, 
current methods of measurement have not been standardized. 
Since the QT interval is prolonged when slower heart rates 
and shortened when faster heart rates, several formulas have 
been proposed to adjust for these kind of variations 

 
Figure 1.Typical Heartbeat of an ECG of a normal synus rhythm. 

In this work, Framingham correction [21] has been used 
because it is based on empirical data from a large population 
sample rather than on hypothetical reasoning: 

𝑄𝑄𝑄𝑄𝐶𝐶 = 𝑄𝑄𝑄𝑄 + 0,154(1 − 𝑅𝑅𝑅𝑅)  (1) 

A. Relevance of QT Interval 
The Estimation of QT interval from the ECG has gained 

relevance because its elongation could predispose to a 
potential fatal ventricular arrhythmia [22, 23, 24]. Recently, 
due to COVID-19 pandemic produced by the pathogen 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2), this issue has raised relevance due to the different 
medications initially used against the illness. In fact, despite 
the absence of clinic trails, treatment used against COVID-19 
disease has originally been based on the combination of 
several medicaments, such as 
hydroxychloroquine/chloroquine, azithromycin and kaletra 
[1, 2]. All of them can delay the ventricular repolarization 
process, resulting in a prolonged QT interval, which can 
produce serious ventricular arrhythmias that lead to the death 
of the patient. Therefore, improper use of QT prolonging 
medications plays and important role and deserve special 
attention. A list of medicaments with known risk of sudden 
death, can be accessed at https://crediblemeds.org/.   

Nevertheless, although the use of QT-prolonging 
medications can predispose to potential fatal ventricular 
arrhythmia, there is a relative paucity of information that can 
help clinicians and patients make optimal informed decisions 
about how best to minimize the risk of this serious 
complication. In this sense, this paper presents a FRBS for 
risk estimation of fatal ventricular arrhythmia based on QT 
interval estimation from ECGs, not only for COVID-19 
patients, but also for patients with QT-prolonging treatment.  

III. PROPOSED FRBS FOR FATAL VENTRICULAR 
ARRHYTHMIA RISK LEVEL ESTIMATION 

FRBS are well-known to have attracted the medicine 
community attention for their application to diagnosis issues 
[3, 4, 5, 6, 7, 8, 11]. A major advantage of FRBS is related to 
their ability to cope with noisy or uncertain information 
presented in highly dynamic systems. In addition, another 
interesting feature is related to the interpretability of its 
decisions, which are made following a human-like reasoning 
and can be understood easily by humans. Therefore, the 
application of FRBS in medicine for different purposes can 
be very beneficial. Next, the main features of the proposed 
FRBS are presented. 
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A. General structure of the proposed FRBS 
The general outline, (including inputs, core and output), 

of the proposed fuzzy rule-based system is shown in Fig. 2.  

The proposed FRBS considers three different inputs, two 
of them are used for the FRBS: corrected QT interval, and 
some relevant clinical information about the patient. The 
other one input, the corrected QT interval Evolution from the 
basal ECG, is used to select the appropriate base of rules of 
the expert system. It is important to highlight that the 
corrected QT interval and the corrected QT interval evolution 
are going to be obtained from the ECG. 

Since the successful operation of a FRBS is strongly 
related to the quality of its knowledge or fuzzy Rule Bases 
(RB), the knowledge has been acquired from different experts 
on the issue (three cardiologists and one pulmonologist) and 
is represented in Fig. 3.  

The output of the proposed FRBS is just the risk level 
estimation of fatal ventricular arrhythmia. The obtained risk 
level estimation is given in a quantitatively way by mean of 
an index in the interval [0,1]. In addition, this estimation is 
also given in a qualitative way by means of three different 
color (similar to traffic lights): Red Color, to indicate a high-
risk level; yellow color, to indicate a moderate level; and 
finally, green color, when a low risk is estimated. 

B. Input and output variables of the FRBS 
The risk level estimation of fatal ventricular arrhythmia is 

based on several input variables obtained from the patient: 
QTc Interval, the QTc evolution from the basal ECG, and 
contextual information about the patient.  

B.1. Input 1: Corrected QT Interval (QTc). 
QTc is calculated according to Framingham formula (1) 

from the QT interval and RR interval. This parameter is 
absolutely relevant in this work since its evolution determines 
the morphological changes and its elongation could 
predispose patients to a potential fatal ventricular arrhythmia 
also known as “torsades de pointes”. 

B.2. Input 2: Clinical information from the patient (CI). 
There are other several risk factors worth considering that 

could affect the prolongation of QTc interval. In [25], a QTc 
interval prolongation risk score has been created, in which, 
for each independent variable, a weighted point score (1, 2, 
or 3 points) has been assigned. To arrive at a risk score for 
QTc interval prolongation, the sum of all points must be 
calculated for each patient. To determine cutoff points for 
low, moderate, and high risk of QTc interval prolongation, 
patients are stratified by total point scores. 

 
Figure.2. General Outline of the proposed FRBS for the fatal ventricular 
arrhythmia risk level estimation. 

 
Figure 3. RBs for the making decision process. 

Independent risk factors for QTc interval prolongation are 
presented in table II, including: ≥ 68 years of age, female sex, 
administration of a loop diuretic, serum K+≤3.5 mEq/L, 
admission QTc ≥ 450 ms, diagnosis of myocardial infarction, 
administration of more than 1 QTc interval–prolonging 
drugs, sepsis left ventricular systolic dysfunction, heart 
failure, and administration of 1 QTc interval–prolonging 
drug. Table I also presents the score assigned to each and 
every risk factor. 

Finally, based on total points calculated for every single 
patient, the risk score has been further categorized into low, 
moderate, and high risk, according to [25]. This further 
taxonomy is depicted in table II. 

Nevertheless, in order to make easy the understanding of 
these scores for clinical staff, this work has changed the scale 
in order to use a full scale of 5 instead of 21. Therefore, the 
score assigned to each and every risk factor has accordingly 
been scaled. 

B.3. Input 3: Corrected QT interval Increment from the basal 
ECG (𝛥𝛥𝑄𝑄𝑄𝑄𝐶𝐶). 

The increment of the corrected QTc interval consists of 
the difference between the QTc interval, obtained from the 
current ECG, and the QTc interval obtained from a basal 
ECG, which has previously obtained in the beginning of the 
pharmacological treatment.  

𝛥𝛥𝑄𝑄𝑄𝑄𝐶𝐶 =  𝑄𝑄𝑄𝑄𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐸𝐸 −   𝑄𝑄𝑄𝑄𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐸𝐸  (2) 

The relevance of this input variable is remarkable because 
it provides some information on the possible repercussions of 
the treatment. It is worth mentioning, that this variable is used 
by the FRBS to select the appropriate knowledge base 
depending on its value, as it is shown in table III. 
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TABLE I.  INDEPENDENT RISK FACTORS FOR QTC INTERVAL 
PROLONGATION  

RISK FACTORS Points 
Age ≥ 0 68 years 1 
Female sex 1 
Loop diuretic 1 
Serum K+ ≤ 3.5 mEq/L 2 
Admission QTC ≥ 450 ms 2 
Acute Myocardial Infarction 2 
≥2 QTc-prolonging drugs 3 
Sepsis 3 
Heart failure 3 
One QTc-prolonging drug 3 

MAXIMUM RISK SCORE 21 

TABLE II.  QTC INTERVAL RISK SCORE  

RISK SCORE CATEGORIES RISK SCORE 
LOW <7 
MODERATE 7-10 
HIGH >10 

TABLE III.  RULES BASE SELECTION 

𝜟𝜟𝜟𝜟𝜟𝜟𝑪𝑪 Selected Rules Base 
𝛥𝛥𝑄𝑄𝑄𝑄𝐶𝐶< 25 ms RB1 (LOW) 
25 ms ≤ 𝛥𝛥𝑄𝑄𝑄𝑄𝐶𝐶< 50 ms RB2 (MIDDLE) 
𝛥𝛥𝑄𝑄𝑄𝑄𝐶𝐶 ≥ 50 ms RB3 (HIGH) 

 
B4. Output. Risk Level Estimation. 

The output of the FRBS is the fatal ventricular arrhythmia 
risk level estimation. This variable is going to be represented 
by the use of colors: Red, when a high arrhythmia risk level 
is estimated; orange, when a moderate arrhythmia risk level 
is estimated, and finally, green, when a low arrhythmia risk 
level is estimated. In order to obtain the output of the FRBS, 
the defuzzification system converts the output sets of every 
rule into an overall output fuzzy set and an overall crisp value 
yo for the whole RB (just a single output is considered here). 
Therefore, a defuzzification operator calculates the value of 
yo from the overall output fuzzy set B′, regarding the “center 
of gravity” defuzzification method, which has been 
considered since it is extensively used in literature: 

𝑦𝑦0 = ∫ 𝑦𝑦·𝜇𝜇𝐵𝐵′
(𝑦𝑦)𝑑𝑑𝑦𝑦 

𝑌𝑌

∫ 𝜇𝜇𝐵𝐵′
(𝑦𝑦)𝑑𝑑𝑦𝑦 

𝑌𝑌
  (3) 

 
Hence, output yo reflects fatal ventricular arrhythmia risk 

level estimation according to values indicated in table IV. 

In Fig. 4, the input and output variables used by the expert 
system are depicted. As it has already been indicated, the 
input related to the evolution or increment of the QTc is not 
used by FRBS. Instead, this variable is used the select the 
knowledge base used by the expert system.  

TABLE IV.  OUTPUT – ARRHYTHMIA RISK LEVEL ESTIMATION 

𝑶𝑶𝑶𝑶𝜟𝜟𝑶𝑶𝑶𝑶𝜟𝜟 QUALITIATIVE RISK LEVEL 
yo  < 0.25 LOW (GREEN) 
0.25≤ yo < 0.75 MODERATE (ORANGE) 
yo ≥ 0.75 HIGH (RED) 

 

 
Fig.4. Membership function of variables used by the FRBS.  

IV. EXPRIMENTAL RESULTS 
In order to present experimental results, which have been 

obtained using MATLAB, both interpretability and accuracy 
are going to be analyzed. 

A. Interpretability Analysis 
Bearing in mind the afore-mentioned ideas, it is worth 

mentioning that one of the most remarkable features of the 
FRBS is related of the interpretability in the decision-making 
process. In fact, the structure of the FRBS has strongly been 
conditioned by clinician criteria in order to favor the 
interpretability. Furthermore, this interpretability has been 
measured taking into account several aspects like semantic 
and complexity by means of a hierarchical fuzzy system 
which provides an interpretability index for every single KB 
used by the expert system [16, 17, 18, 19] and whose input 
and output variables are shown in Table V, where N is the 
number of labels. These variables are taken as inputs of a 
hierarchical fuzzy system and they are grouped according to 
the information they convey. Therefore, the Interpretability 
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Index is computed as the result of inference of a hierarchical 
fuzzy system that is broken down in four linked KBs. A first 
rule base, called “Rule Base Dimension”, makes an 
estimation of the rule base dimension taking into account as 
inputs the total number of rules and premises. At the same 
time, a second rule base, called “Rule Base Complexity,” 
assesses the rule base complexity bearing in mind the number 
of inputs used by the rules (one input, two inputs three or 
more inputs). Additionally, a third rule base, called “Rule 
Base Interpretability”, combines the rule base dimension and 
the complexity, through its outputs, and it yields a rule base 
interpretability index.  

Finally, a rule base integrates the rule base interpretability 
with the evaluation of interpretability for the system 
variables, considering the total number of labels per input and 
assuming that the fuzzy rule-based systems to be evaluated 
only include strong fuzzy partitions. Additional explanation, 
including the rule bases used, on this hierarchical fuzzy 
system for the interpretability assessment can be found in [16, 
17, 18, 19]. The obtained value for the interpretability index 
is 0.71, which is the same for every single knowledge base 
used by the expert system for the fatal ventricular arrhythmia 
estimation depicts how good is the interpretability in the 
decision-making process of the developed application. It is 
important to point up that this is a remarkable index that give 
relevance to the interpretability of the different knowledge 
bases used by the FRBS, and that has been checked by 
clinicians involved in this work. 

B. Results Validation 
It is important to point out that in order to know how good 

the made decision is, the outputs of the FRBS have been 
compared to the estimations carried out by specialist doctors. 
Regarding to this comparison, it is important to point out that 
a scenario with 84 examples, every single one with three 
different values for the input variables, has been considered. 
Results of this comparison are shown in table VI in form of a 
confusion matrix.  

From this matrix, it can be inferred that the 96.43% of the 
decision made by the FRBS are the same the made by 
specialist doctors. 

TABLE V.  INPUT AND OUTPUT VARIABLES FOR THE HIERARCHICAL 
FUZZY SYSTEM USED FOR THE INTERPRETABILITY INDEXES OBTAINING 

VARIABLE  UNIVERSE OF 
DISCOURSE 

NUMBER 
OF LABELS 

Total number of rules [N,8 x N] 3 

Total number of premises [N,16 x N] 2 

Number of rules with one input [0,8 x N] 2 

Number of rules with two inputs [0,8 x N] 2 

Number of rules with three or 
more inputs [0,8 x N] 2 

Average number of labels by 
input [2,9] 2 

Rule base dimension [0,1] 3 

Rule base complexity [0, 1] 3 

Rule base Interpretability [0, 1] 5 

Interpretability index [0, 1] 5 

TABLE VI.  CONFUSION MATRIX 

CONFUSION MATRIX 
 FRBS DECISIONS 

GREEN ORANGE RED 

DOCTORS 
DECISIONS 

GREEN 9 0 0 
ORANGE 1 19 1 
RED 0 1 53 

TABLE VII.  STUDY CASES 

 INPUTS OUTPUT 
QTc (ms) CI 𝜟𝜟𝜟𝜟𝜟𝜟𝑪𝑪 (ms) yo 

Patient 1 476 0.24 55 0.93 
Patient 2 450 1.91 30 0.50 
Patient 3 455 0.48 15 0.08 

TABLE VIII.  ACTIVATED RULES AND OUTPUTS 

Activated Rules for Patient 1 Output 
If (QTc is NORMAL-MODERATE-HIGH) and 
(CI is not HIGH) then (RISK is ORANGE) 

 If (QTc is HIGH-VERYHIGH) then (RISK is 
RED) 

Activated Rules for Patient 2 Output 
If (QTc is LOW-NORMAL) and (CI is 
MIDDLE) then (RISK is ORANGE) 

 If (CI is HIGH) then (RISK is RED) 
Activated Rules for Patient 3 Output 

If (QTc is LOW-NORMAL) and (CI is LOW) 
then (RISK is GREEN) 

 If (QTc is HIGH) and (CI is not HIGH) then 
(RISK is ORANGE) 

C. Study Cases  
In order to show how the proposed FRBS works, several 

examples, one per every single fatal ventricular arrhythmia 
risk level, are going to be depicted. For this purpose, three 
different patients’ situations are considered, whose inputs 
variables are presented in table VII.  

• Patient 1. Bearing in mind the 𝛥𝛥𝑄𝑄𝑄𝑄𝐶𝐶 , RB3 must be 
selected. In this case, two different rules have been 
activated, see table VIII, and the output is y0=0.93 which 
means a high arrhythmia risk level. 

• Patient 2. According to 𝛥𝛥𝑄𝑄𝑄𝑄𝐶𝐶, RB2 must be selected. In 
this case, two different rules have been activated, see 
table VIII, and the output is y0=0.5 which means a 
moderate arrhythmia risk level. 

• Patient 3. Taking into account 𝛥𝛥𝑄𝑄𝑄𝑄𝐶𝐶 , RB1 must be 
selected. In this case, two different rules have been 
activated, see table VIII, and the output is y0=0.08 which 
means a low arrhythmia risk level. 

V. CONCLUSIONS AND FUTURE ACTIONS  
This work presents a FRBS for fatal ventricular arrhythmia 

risk level estimation, which has been developed taking into 
account the experience of several cardiologist and 
pulmonologist who are with four (private and public) different 
hospitals in Spain.  Due to the followed criteria of specialist 
doctors during the design and implementation phase, the 
proposed FRBS for fatal ventricular arrhythmia risk level 
estimation, presents a reliable behavior in terms of 
comparison with specialist doctors decision (96.43% 
accuracy). In addition, the proposed FRBS presents a highly 
interpretable decision-making process (0,71 interpretability 
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index), which give answer to the European General Data 
Protection Regulation and to one of the key challenges of AI 
so that it can success in clinical applications. Furthermore, 
related to clinical issues, this FRBS has been aimed to patients 
who undergo with QT prolonger (combined or not) treatment 
against illnesses like COVID-19, for instance. Among the 
main features of this FRBS, it is worth mentioning the 
capability of avoiding deaths in patients with QT prolonger 
treatment, regardless if they are in health center with or 
without specialized clinical staff, and the high interpretability 
by clinicians of the decision-making process, which make 
easy the deployment of applications. Regarding future actions, 
authors are already working on several issues such as the 
developing of a real free real-time web application, which will 
provide access to the presented FRBS in a convenient way, 
and the improvement in the QT interval calculation from ECG 
signals, which has a relevant impact on the performance of the 
developed FRBS. Additionally, authors are working on the 
acquisition of knowledge bases by machine learning 
algorithms [26, 27, 28] trying not to compromise the 
interpretability.  
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